

Meta-analysis & Systematic Review: An Introduction

Dr. Nayanjeet Chaudhury, MD, MPH Associate Professor and Head of Chronic Disease Centre, Asian Institute of Public Health, Bhubaneswar, India

Adjunct Faculty, College of Public Health, Univ. of Nebraska Medical Centre, Omaha, USA

META-ANALYSIS

 A statistical analysis of results from separate studies, examining sources of differences in results among studies, and leading to a quantitative summary of the results if the results are judged sufficiently similar to support such synthesis.

Dictionary of epidemiology, 2nd edition

Systematic Review

- The application of strategies that limit bias in the assembly, critical appraisal, and synthesis of all relevant studies on a specific topic.
- Meta-analysis may be, but is not necessarily, used as part of this process.

Dictionary of epidemiology, 2nd edition

Cochrane Reviews

- These are systematic reviews of primary research in health care and health policy.
- They investigate the effects of interventions for prevention, treatment and rehabilitation.
- They also assess the accuracy of a diagnostic test for a given condition in a specific patient group and setting.

http://www.cochrane.org/cochrane-reviews

Hallmarks of a good systematic review

- A clearly formulated question
- A thorough search for all the existing primary research on a topic that meets certain criteria
- Assessment of the primary studies using stringent guidelines
- Establish whether or not there is conclusive evidence about a specific treatment.

http://www.cochrane.org/cochrane-reviews

WHEN to do a meta-analysis?

- When more than one study has estimated an effect
- When there are no differences in the study characteristics (patients, interventions) that may affect outcome, so that combining data will produce a clinically useful and meaningful result
- When the outcome has been measured in similar ways
- When the data are available (beware when only some data are available)
- REMEMBER, you do not need to statistically pool results to include a systematic review

The QUOROM (Quality Of Reporting Of Meta-analyses) Statement (click)

Heading	Subheading	Descriptor						
Title		Identify the report as a meta-analysis [or systematic review] of RCTs ²⁶						
Abstract		Use a structured format ²⁷						
		Describe						
	Objectives	The clinical question explicitly						
	Data sources	The databases (ie, list) and other information sources						
	Review methods	The selection criteria (ie, population, intervention, outcome, and study design); methods for validity assessment, data abstraction, and study characteristics, and quantitative data synthesis in sufficient detail to permit replication						
	Results	Characteristics of the RCTs included and excluded; qualitative and quantitative findings (ie, point estimates and confidence intervals); and subgroup analyses						
	Conclusion	The main results						

Steps in a meta-analysis

- Define comparisons (interventions)
- Decide on appropriate study results (outcomes) for each comparison
- Select an appropriate summary statistic for each comparison
- Weight studies
- Pool results (Data synthesis/meta-analysis)
- Assess the similarity of study results within each comparison (homogeneity)
- Consider the reliability of the summaries

Defining comparisons

- Clinically meaningful comparisons
- Specific interventions or generic ones
- Drug A vs Drug B

Combining results

- For example:
 - 6 controlled trials studying the effect of hypothermia on death rates in head injured patients
- How can we summarise the effect of hypothermia across these trials?

Summary statistic for each study

- Calculate a single summary statistic to represent the effect found in each study
- For binary data
 - Ratio of risks (risk ratio; relative risk)
 - Difference in risks (risk difference)
 - -Ratio of odds (odds ratio)
- For continuous data
 - Difference between means

For example

- 6 studies, hypothermia following head injury vs. no hypothermia; relative risks of death (95% CI)
 - **1**.0 (0.08, 11.93)
 - 0.96 (0.44, 2.10)
 - 0.67 (0.24, 1.83)
 - 0.45 (0.21, 0.96)
 - 0.97 (0.44, 2.13)
 - **1.08 (0.27, 4.37)**

Weighting studies

- More weight to the studies which give us more information
 - More participants
 - More events
 - -Lower variance
- Weight is proportional to inverse variance

For example

	Deaths on hypothermia	Deaths on control	Weight (%)
Clifton 1992	1/5	1/5	2.4
Clifton 1993	8/23	8/22	20.0
Hirayama 1994	4/12	5/10	13.4
Jiang 1996	6/23	14/24	33.5
Marion 1997	9/39	10/42	23.6
Meissner 1998	3/12	3/13	7.1

Algorithm of statistical choices available to systematic reviewers.

Displaying results graphically

forest plots
 Commonly used

Analysis 1.3. Comparison | Surgery + Radiotherapy vs Radiotherapy, Outcome 3 Neurological Death.

Analysis I.3. Comparison I Surgery + Radiotherapy vs Radiotherapy, Outcome 3 Neurological Death.

Review: Surgical resection and whole brain radiation therapy versus whole brain radiation therapy alone for single brain metastases

Comparison: I Surgery + Radiotherapy vs Radiotherapy

Outcome: 3 Neurological Death

Study or subgroup	Favours Surgery+WBRT	Favours WBRT alone	Ri	sk Ratio	Weight	Risk Ratio	
	n/N	n/N	M-H,Rand	om,95% Cl		M-H,Random,95% Cl	_
Mintz 1996	6/41	12/43		-	27.4 %	0.52 [0.22, 1.27]	
Patchell 1990	6/21	11/22		-	33.7 %	0.57 [0.26, 1.27]	
Vecht 1993	9/28	10/30	-+		39.0 %	0.96 [0.46, 2.02]	
Total (95% CI)	90	95	•		100.0 %	0.68 [0.43, 1.09]	
For each st there is an (first author and date of publication	id ⁹ = 0.1 or into th and co	ata for rial re, divided ne experimento ntrol groups	0.2 0.5 I rs treatment	2 Favour	s is the % en to this dy in the led analys	weight	•

Analysis 1.3. Comparison I Surgery + Radiotherapy vs Radiotherapy, Outcome 3 Neurological Death.

Analysis I.3. Comparison I Surgery + Radiotherapy vs Radiotherapy, Outcome 3 Neurological Death.

Review: Surgical resection and whole brain radiation therapy versus whole brain radiation therapy alone for single brain metastases

Comparison: I Surgery + Radiotherapy vs Radiotherapy

Outcome: 3 Neurological Death

Study or subgroup	Favours Surgery+WBRT	Favours WBRT alone	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Random,95% Cl		M-H,Random,95% Cl
Mintz 1996	6/41	12/43		27.4 %	0.52 [0.22, 1.27]
Patchell 1990	6/21	11/22		33.7 %	0.57 [0.26, 1.27]
Vecht 1993	9/28	10/30		39.0 %	0.96 [0.46, 2.02]
Total (95% Cl) Total even Heteroger Test for ov trec have ther betv	vertical line dle is where atment and c e the same e re is no diffe ween the two	e in the the control effect - erence 0	0.1 0.2 0.5 1 2 5 Favours treatment Favours contr	100.0 %	0.68 [0.43, 1.09]

At the bottom there's a horizontal line. This is the scale measuring the treatment effect. Here the outcome is death and towards the left the scale is less than one, meaning the treatment has made death less likely.										
Outcome: 3 Neurological Death Study or subgroup Favours	Take care left do no the contro	to read wl t always m ol.	hat the lo ean the t	abels s reatm	say - thi Ient is bi	ngs to the etter than				
Mintz 1996	6/41	12/43			27.4 %	0.52 [0.22, 1.27]				
Patchell 1990	6/21	11/22			33.7 %	0.57 [0.26, 1.27]				
Vecht 1993	9/28	10/30	_		39.0 %	0.96 [0.46, 2.02]				
Total (95% CI)	90	95	•		100.0 %	0.68 [0.43, 1.09]				
Total events: 21 (Favours Surgery+)	WBRT), 33 (Favours WBRT	alone)		/						
Heterogeneity: Tau ² = 0.0; Chi ² =	.38, df = 2 (P = 0.50); l ² =	0.0%		/						
Test for overall effect: $Z = 1.61$ (P =	= 0.11)			,						
		0		5 10						
		Favr	ours treatment Fav	ours control						
		Tave	and a counterner 1 dv	ours cond of						

Analysis 1.3. Comparison I Surgery + Radiotherapy vs Radiotherapy, Outcome 3 Neurological Death.

Review: Surgical resection and whole brain radiation therapy versus whole brain radiation therapy alone for single brain metastases

Cochrane Library, Issue 1, 2004. Chichester, UK: John Wiley & Sons, Ltd.

Pooling continuous data: what you need

- Number of participants in each group, means and standard deviations
- Each trial will present, or allow you to calculate a *mean difference*.
- Mean difference is the difference between the means of the two groups

When to use MD / SMD

(Weighted) Mean Difference

 When studies have comparable outcome measures (i.e. Same scale, probably same length of follow-up etc)

<u>Standardized Mean Difference</u>

• When studies use different outcome measurements to address the same clinical outcome (e.g. different scales)

Continuous data -Weighted Mean Difference

Review:	 Antibiotics for acute bronchitis (Version 02)
Comparison:	08 Days of cough
Outcome:	01 mean number of days of cough

Study		Treatment		Control		W	MD (fixed)		Weight	WMD (fixed)
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)			95% CI		×	95% CI
Stott 1976	104	6.40(2.60)	103	6.30(3.00)			+		56.27	0.10 [-0.67, 0.87]
Williamson 1984	39	7.97(7.22)	34	10.41(8.80)	←	•			2.37	-2.44 [-6.17, 1.29]
Scherl 1987	16	9.40(3.08)	15	10.80(2.38)	_		<u> </u>		8.83	-1.40 [-3.33, 0.53]
Verheij 1994	71	4.70(3.10)	69	6.20(3.20)		-	-		30.21	-1.50 [-2.54, -0.46]
King 1996	50	8.76(7.57)	42	8.94(10.37)			-		- 2.31	-0.18 [-3.95, 3.59]
Total (95% CI)	280		263						100.00	-0.58 [-1.16, -0.01]
Test for heterogeneity: Chi	² = 7.71, df = 4 (P :	= 0.10), I² = 48.1%					•			
Test for overall effect: Z =	1.99 (P = 0.05)									
					-4	-2	Ó	2	4	
					Favo	ours antibiot	tic Favo	urs placeb	0	

Continuous data -Standardised Mean Difference

 Review:
 Antibiotics for acute bronchitis (Version 02)

 Comparison:
 08 Days of cough

 Outcome:
 01 mean number of days of cough

Study		Treatment		Control		S	MD (fixed)		Weight	SMD (fixed)
or sub-category	N	Mean (SD)	Ν	Mean (SD)			95% Cl		%	95% Cl
Stott 1976	104	6.40(2.60)	103	6.30(3.00)			+		38.61	0.04 [-0.24, 0.31]
Williamson 1984	39	7.97(7.22)	34	10.41(8.80)			-		13.39	-0.30 [-0.76, 0.16]
Scherl 1987	16	9.40(3.08)	15	10.80(2.38)		-	•		5.58	-0.49 [-1.21, 0.22]
Verheij 1994	71	4.70(3.10)	69	6.20(3.20)			+		25.38	-0.47 [-0.81, -0.14]
King 1996	50	8.76(7.57)	42	8.94(10.37)			+		17.03	-0.02 [-0.43, 0.39]
Total (95% Cl)	280		263				•		100.00	-0.18 [-0.35, -0.01]
Test for heterogeneity: Ch	i² = 6.92, df = 4 (P :	= 0.14), I² = 42.2%								
Test for overall effect: Z =	2.06 (P = 0.04)									
					-4	-2	0	2	4	
					Fav	ours antibio	rtic Favo	urs placebr	n	

Heterogeneity

- Indicates that effect varies a lot across studies
- If heterogeneity is present, a common, summary measure is hard to interpret

Types of heterogeneity

- Statistical
 - Excessive variation in the results of studies

- Variation in treatment effects above that expected by chance

– Some degree of statistical heterogeneity is inevitable?

Types of heterogeneity

- Clinical
 - -Can be due to differences in:
 - Patient populations studied
 - Interventions used
 - Co-interventions
 - Outcomes measured

Types of heterogeneity

Methodological

-Variation in methods used in studies e.g. quality of allocation concealment

Identifying heterogeneity graphically

- If studies are estimating the same thing we would expect confidence intervals to overlap to a large extent
- Statistical heterogeneity may appear in a forest plot as poor overlap of confidence intervals
- Look for outliers

Analysis 01.01. Comparison 01 All nursing intervention vs control trials, grouped by intensity of intervention, Outcome 01 Smoking cessation at longest follow-up

Review: Nursing interventions for smoking cessation

Comparison: 01 All nursing intervention vs control trials, grouped by intensity of intervention

Outcome: 01 Smoking cessation at longest follow-up

Rice VH,

Study	Treatment	Control	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	95% Cl	(%)	95% CI
01 High intensity interver	ntion				
Allen 1996	9/14	6/11		0.7	1.48 [0.30, 7.16]
Bolman 2002	103/334	110/401		16.6	1.18 [0.86, 1.62]
Canga 2000	25/147	3/133		2.8	5.12 [2.35, 11.17]
Carlsson 1997	16/32	9/35		1.8	2,78 [1.04, 7.44]
Curry 2003	4/156	3/147	!	0.8	1.26 [0.28, 5.63]
DeBusk 1994	92/131	64/121	- - -	6.6	2.08 [1.25, 3.46]
Hollis 1993	79/1997	15/710		7.8	1.73 [1.09, 2.77]
Lancaster 1999	8/249	10/248		1.9	0.79 [0.31, 203]
Lewis 1998	4/62	3/61	<u> </u>	0.7	1.33 [0.29, 607]
Miller 1997	245/1000	191/942	-	37.3	1.27 [1.03, 1.58]
Rice 1994	24/207	16/48		2.3	0.19 [0.08, 0.46]
Rigotti 1994	22/44	22/43		2.4	0.96 [0.41, 2.20]
Taylor 1990	47/84	20/82	 -	4.4	3.68 [1.98, 6.83]
Terazawa 2001	8/117	1/111		1.0	4.75 [1.26, 17.99]
Subtotal (95% CI)	4574	3093	•	87.0	1.43 [1.24, 1.64]
Total events: 686 (Treatm	nent), 473 (Control)				
Test for heterogeneity ch	i-square=52.42 df=13 p=	0.0001 1?? =75.2%			
Test for overall effect z=4	1.98 p<0.00001				
			0.1 0.2 0.5 1 2 5 10		
			Favours Control Favours Treatme	nt	(Continued)

Cochrane Library, Issue 1, 2004. Chichester, UK: John Wiley & Sons, Ltd.

If heterogeneity is found

Statistical models for combining data:

Fixed effects model

it is assumed that the true
 effect of treatment is the same
 value in each study (fixed); the
 differences between studies is
 solely due to random error /

If heterogeneity is found

Statistical models for combining data:

- Random effects model
 - the treatment effects for the individual studies are assumed to vary around some overall average treatment effect
 - Studies tend to be weighted more equally

Identifying factors that can explain heterogeneity

- Sensitivity analysis
- Subgroup analysis
- Meta-regression

When can meta-analyses mislead?

- When a meta-analysis is done outside of a systematic review
- When quality issues are ignored
- When inadequate attention is given to heterogeneity
- When reporting biases are a problem
 - Publication bias
 - Time lag bias
 - Duplicate publication bias
 - Language bias
 - Outcome reporting bias
 - Citation bias

Egger M et al. Uses and abuses of meta-analysis. Clinical Medicine 2001;1:478-84

Malu for Wisht for WWW.cochtrance.org Meta-analysis software

Free ۲

- RevMan [Review Manager]
- Meta-Analyst
- Epi Meta
- Easy MA
- Meta-Test
- Meta-Stat
- Commercial •
 - Comprehensive Meta-analy
 - Meta-Win
 - WEasy MA
- General stats package •
 - Stata
 - SAS
 - S-Plus

REVMAN is a data entry, word processing and statistical package produced by the Cochrane Collaboration